Full-Vector Beam Propagation Methods for 3D Optical Waveguides

Department of Mathematics, City University of Hong Kong
Student: Chui Siu Lit Supervisor: Dr. Y. Y. Lu
Programme of study: Master of Philosophy

Introduction
An optical waveguide is a dielectric structure which confines and guides light waves to propagate along a pre-determined path. An optical fiber is a well-known optical waveguide. The beam propagation method (BPM) is the most widely used numerical tool for simulating the propagation of light in 3D optical waveguides. We develop a wide-angle full-vector BPM based on alternating direction implicit (ADI) pre-conditioner. The exponential of a square root operator (the propagator) is first approximated by a rational function of the transverse differential operator X. The linear equations involving the operator X are solved by a Krylov subspace method with an ADI pre-conditioner. To show the validity and usefulness of our methods, waves propagating in a Y-branch rib waveguide is numerically simulated.

Basic Formulations
1.) Consider the one-way equation for the transverse components of the magnetic field,

$$\frac{\partial u}{\partial z} = ik_0 n_* \sqrt{1 + X} u$$

where $u = [H_x, -H_y]^T$ is a vector related to the x and y components of the magnetic field, X is a 2×2 transverse differential operator, k_0 is the free space wave number and n_* is a reference refractive index.

2.) Equation (1) is discretized in the propagation direction z. For a propagation step from z_j to $z_{j+1} = z_j + h$,

$$P u_{j+1} = Pu_j + h X u_j$$

where P is the propagator, h is the step size, $s = k_0 n_* h$, X is evaluated at the midpoint $z_j + h/2$, u_j approximates u at z_j, etc.

3.) The $[p-1/p]$ Padé approximants of P can be used and this requires solving the linear equation

$$(1 + bX)w = f$$

where b is a given constant, f is a given vector of two functions and w is a vector of two unknown functions.

4.) Reformulate equation (3) as in the ADI iterative scheme for elliptic problems, then solve the new equation by a Krylov subspace method called BICGSTAB. Also, the optimal value of a parameter is calculated form eigenvalue estimates of the related operators.

Numerical Example
- The Y-branch is excited by the fundamental mode field for $\lambda = 1.55 \mu m$.
- Propagates from $z = 0$ to $40 \mu m$ with $\Delta z = 0.1 \mu m$.
- Computational domain: $|x| < 4 \mu m$ and $|y| < 2 \mu m$.
- Discretized with grid sizes $\Delta x = \Delta y = 0.05 \mu m$.
- Perfectly Matched Layer with thickness = 0.3 μm.
- $[3/4]$ Padé approximants of P is used with $n_* = 3.3885$
- Magnitude of H_y at $z = 0$, 24 and 40 μm are shown below: